Necessary conditions for a maximum likelihood estimate to become asymptotically unbiased and attain the Cramer-Rao lower bound. Part I. General approach with an application to time-delay and Doppler shift estimation.

نویسندگان

  • E Naftali
  • N C Makris
چکیده

Analytic expressions for the first order bias and second order covariance of a general maximum likelihood estimate (MLE) are presented. These expressions are used to determine general analytic conditions on sample size, or signal-to-noise ratio (SNR), that are necessary for a MLE to become asymptotically unbiased and attain minimum variance as expressed by the Cramer-Rao lower bound (CRLB). The expressions are then evaluated for multivariate Gaussian data. The results can be used to determine asymptotic biases. variances, and conditions for estimator optimality in a wide range of inverse problems encountered in ocean acoustics and many other disciplines. The results are then applied to rigorously determine conditions on SNR necessary for the MLE to become unbiased and attain minimum variance in the classical active sonar and radar time-delay and Doppler-shift estimation problems. The time-delay MLE is the time lag at the peak value of a matched filter output. It is shown that the matched filter estimate attains the CRLB for the signal's position when the SNR is much larger than the kurtosis of the expected signal's energy spectrum. The Doppler-shift MLE exhibits dual behavior for narrow band analytic signals. In a companion paper, the general theory presented here is applied to the problem of estimating the range and depth of an acoustic source submerged in an ocean waveguide.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Necessary conditions for a maximum likelihood estimate to become asymptotically unbiased and attain the Cramer-Rao lower bound. II. Range and depth localization of a sound source in an ocean waveguide.

Analytic expressions for the first order bias and second order covariance of a maximum-likelihood estimate (MLE) are applied to the problem of localizing an acoustic source in range and depth in a shallow water waveguide with a vertical hydrophone array. These expressions are then used to determine necessary conditions on sample size, or equivalently signal-to-noise ratio (SNR), for the localiz...

متن کامل

تخمین جهت منابع با استفاده از زیرفضای کرونکر

This paper proceeds directions of arrival (DOA) estimation by a linear array. These years, some algorithms, e.g. Khatri-Rao approach, Nested array, Dynamic array have been proposed for estimating more DOAs than sensors. These algorithms can merely estimate uncorrelated sources. For Khatri-Rao approach, this is due to the fact that Khatri-Rao product discard the non-diagonal entries of the corre...

متن کامل

Effect of prior probability quality on biased time-delay estimation.

When properly constructed, biased estimators are known to produce lower mean-square errors than unbiased estimators. A biased estimator for the problem of ultrasound time-delay estimation was recently proposed. The proposed estimator incorporates knowledge of adjacent displacement estimates into the final estimate of a displacement. This is accomplished by using adjacent estimates to create a p...

متن کامل

Improved Cramer-Rao Inequality for Randomly Censored Data

As an application of the improved Cauchy-Schwartz inequality due to Walker (Statist. Probab. Lett. (2017) 122:86-90), we obtain an improved version of the Cramer-Rao inequality for randomly censored data derived by Abdushukurov and Kim (J. Soviet. Math. (1987) pp. 2171-2185). We derive a lower bound of Bhattacharya type for the mean square error of a parametric function based on randomly censor...

متن کامل

The Structure of Bhattacharyya Matrix in Natural Exponential Family and Its Role in Approximating the Variance of a Statistics

In most situations the best estimator of a function of the parameter exists, but sometimes it has a complex form and we cannot compute its variance explicitly. Therefore, a lower bound for the variance of an estimator is one of the fundamentals in the estimation theory, because it gives us an idea about the accuracy of an estimator. It is well-known in statistical inference that the Cram&eac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of the Acoustical Society of America

دوره 110 4  شماره 

صفحات  -

تاریخ انتشار 2001